Parasitic Stimulated Amplification in High-Peak-Power and Diode-Seeded Nanosecond Fiber Amplifiers

C. L. Chang, P. Y. Lai, Y. Y. Li, Y. P. Lai, C. W. Huang, S. H. Chen, Y. W. Lee, S. L. Huang

研究成果: 雜誌貢獻期刊論文同行評審

15 引文 斯高帕斯(Scopus)

摘要

The broadband parasitic amplification in a diode-seeded nanosecond ytterbium-doped fiber laser amplifier system is numerically and experimentally investigated. The amplification is originated from a weak and pulsed parasitic signal associated with the 1064-nm seed diode laser. Although the average power of the parasitic pulse is less than 5% of the total seed laser power, a significant transient spike is observed during the amplification. In agreement with the simulation, nonlinear effects caused by the transient spike limits the scaling of signal peak power in fiber preamplifiers. With the utilization of a narrow bandwidth filter to eliminate the parasitic pulse, the power and energy scalability of a multistage diode-seeded fiber amplifier laser system has been significantly improved. At 1064 nm, pulses with the peak power of 120 kW and energy of 1.2 mJ have been successfully generated in the multistage Yb3+-doped fiber amplifier with an energy gain of 63 dB and 56% conversion efficiency. In viewing of the parasitic pulse's 8.8-nm bandwidth, it has the potential to become a novel seed source for high-peak-power fiber amplifiers.

原文???core.languages.en_GB???
文章編號1500809
期刊IEEE Photonics Journal
6
發行號3
DOIs
出版狀態已出版 - 1 6月 2014

指紋

深入研究「Parasitic Stimulated Amplification in High-Peak-Power and Diode-Seeded Nanosecond Fiber Amplifiers」主題。共同形成了獨特的指紋。

引用此