Parallel pseudo-transient Newton-Krylov-Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows

Chiau Yu Huang, Feng Nan Hwang

研究成果: 雜誌貢獻期刊論文同行評審

6 引文 斯高帕斯(Scopus)

摘要

We propose a parallel pseudo-transient continuation algorithm, in conjunction with a Newton-Krylov-Schwarz (NKS) algorithm, for the detection of the critical points of symmetry-breaking bifurcations in sudden expansion flows. One classical approach for examining the stability of a stationary solution to a system of ordinary differential equations (ODEs) is to apply the so-called a method-of-line approach, beginning with some perturbed stationary solution to a system of ODEs and then to investigate its time-dependent response. While the time accuracy is not our concern, the adaptability of time-step size is a key ingredient for the success of the algorithm in accelerating the time-marching process. To allow large time steps, unconditionally stable time integrators, such as the backward Euler's method, are often employed. As a result, the price paid is that at each time step, a large sparse nonlinear system of equations needs to be solved. The NKS is a good candidate solver for a system. Our numerical results obtained from a parallel machine show that our algorithm is robust and efficient and also verify, qualitatively, the bifurcation prediction with published results. Furthermore, imperfect pitchfork bifurcations are observed, especially for the case with a small expansion ratio, in which the occurrence of bifurcation points is delayed due to the stabilization terms in Galerkin/Least squares finite elements on asymmetric, unstructured meshes.

原文???core.languages.en_GB???
頁(從 - 到)738-751
頁數14
期刊Applied Numerical Mathematics
60
發行號7
DOIs
出版狀態已出版 - 7月 2010

指紋

深入研究「Parallel pseudo-transient Newton-Krylov-Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows」主題。共同形成了獨特的指紋。

引用此