TY - JOUR
T1 - Ozone containment through selective mitigation measures on precursors of volatile organic compounds
AU - Chen, Sheng Po
AU - Liu, Wen Tzu
AU - Cheng, Fang Yi
AU - Wang, Chieh Heng
AU - Huang, Shih Ming
AU - Wang, Jia Lin
N1 - Publisher Copyright:
© 2023
PY - 2024/1/15
Y1 - 2024/1/15
N2 - Abatement of volatile organic compounds (VOCs) ozone reduction is usually carried out by reducing the total amount of VOCs without considering reactivity between different species. This study incorporates the concept of maximum incremental reactivity (MIR) and speciation profiles into the industrial emission inventory of Taiwan to target organic species from industrial sources with the greatest ozone formation potentials (OFPs). These high OFP sources/species are then mitigated to assess the O3 reduction amount (ΔO3) with Community Multiscale Air Quality (CMAQ) modeling under VOC-limited conditions. The objective is to minimize the number of target sources/species and their tonnage while achieving maximum O3 reduction. This approach is referred to as the Selective Precursor Mitigation (SPM). A case study of a high ozone episode (September 4–10, 2020) was chosen for illustration, during which a relatively stagnant atmospheric condition with minimal transboundary ozone occurred. A series of scenarios to target the highest OFP chemicals/industries for mitigation are compared for the achievable max. ΔO3, areas affected (area coverage), and reduction efficiency. For instance, by reducing the ten leading industry classes with the island's highest OFPs (OFPind), up to 19 % of max. 1-h ΔO3 can be expected. If, however, the same tonnage of VOCs as that of OFPind is distributed to all industries without considering the reactivity, called the overall mitigation (OM), comparable results to those of OFPind were found, but the number of sources needed to be managed with OM would increase by nearly three times (29,662 for OM vs. 11,981 for OFPind). Further reducing the management scale by only zooming in the ten highest OFP chemicals within the ten leading OFP industries (OFPsp) would result in relatively limited area coverage. Still, major ozone hot spots could be alleviated. Although the domain is set on the island of Taiwan, the SPM approach is universally applicable to other regions worldwide to gain the maximum ozone reduction effect at a minimized societal cost.
AB - Abatement of volatile organic compounds (VOCs) ozone reduction is usually carried out by reducing the total amount of VOCs without considering reactivity between different species. This study incorporates the concept of maximum incremental reactivity (MIR) and speciation profiles into the industrial emission inventory of Taiwan to target organic species from industrial sources with the greatest ozone formation potentials (OFPs). These high OFP sources/species are then mitigated to assess the O3 reduction amount (ΔO3) with Community Multiscale Air Quality (CMAQ) modeling under VOC-limited conditions. The objective is to minimize the number of target sources/species and their tonnage while achieving maximum O3 reduction. This approach is referred to as the Selective Precursor Mitigation (SPM). A case study of a high ozone episode (September 4–10, 2020) was chosen for illustration, during which a relatively stagnant atmospheric condition with minimal transboundary ozone occurred. A series of scenarios to target the highest OFP chemicals/industries for mitigation are compared for the achievable max. ΔO3, areas affected (area coverage), and reduction efficiency. For instance, by reducing the ten leading industry classes with the island's highest OFPs (OFPind), up to 19 % of max. 1-h ΔO3 can be expected. If, however, the same tonnage of VOCs as that of OFPind is distributed to all industries without considering the reactivity, called the overall mitigation (OM), comparable results to those of OFPind were found, but the number of sources needed to be managed with OM would increase by nearly three times (29,662 for OM vs. 11,981 for OFPind). Further reducing the management scale by only zooming in the ten highest OFP chemicals within the ten leading OFP industries (OFPsp) would result in relatively limited area coverage. Still, major ozone hot spots could be alleviated. Although the domain is set on the island of Taiwan, the SPM approach is universally applicable to other regions worldwide to gain the maximum ozone reduction effect at a minimized societal cost.
KW - CMAQ
KW - OFP
KW - Ozone control
KW - Volatile organic compounds
UR - http://www.scopus.com/inward/record.url?scp=85177232126&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2023.167953
DO - 10.1016/j.scitotenv.2023.167953
M3 - 期刊論文
C2 - 37865244
AN - SCOPUS:85177232126
SN - 0048-9697
VL - 908
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 167953
ER -