Oxidation of TCE by Combining Perovskite-Type Catalyst with DBD

Kuan Lun Pan, Cheng Bin He, Moo Been Chang

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

A novel hybrid system constituting of La-Mn-based perovskite-type catalyst with nonthermal plasma (NTP) is developed and evaluated for the removal of trichloroethylene (TCE) from gas streams. Ce and Ni were used as promoter for modification LaMnO 3 because addition of Ce and Ni could enhance redox property and activity of catalyst. First, the activities of various perovskites including LaMnO 3 , La 0.8 Ce 0.2 MnO 3 , and La 0.8 Ce 0.2 Mn 0.8 Ni 0.2 O 3 were evaluated for TCE removal via catalysis, and the results indicate that La 0.8 Ce 0.2 Mn 0.8 Ni 0.2 O 3 has the highest activity for TCE removal among three perovskites prepared. The three perovskites are individually combined with NTP to form various plasma catalysis systems for TCE removal. Experimental results indicate that 100% TCE removal efficiency can be achieved with plasma catalysis (La 0.8 Ce 0.2 Mn 0.8 Ni 0.2 O 3 ) when the system is operated with the applied voltage of 16 or 17 kV. On the other hand, the highest TCE removal efficiency achieved with NTP alone is 73.2% with the applied voltage of 17 kV. In addition, CO 2 mineralization efficiencies achieved with plasma catalysis combined with La 0.8 Ce 0.2 Mn 0.8 Ni 0.2 O 3 (31.1%-46.6%) are significantly higher than that of NTP alone (8.4%-13.1%). It is worth noting that concentrations of O 3 and NO x generated with plasma catalysis are significantly lower than that of NTP alone, implying that formation of O 3 and NO x could be effectively decomposed as plasma catalysis is applied for TCE removal. Overall, perovskite-type catalyst can be integrated with NTP to form plasma catalysis system for effective removal of TCE from gas streams.

原文???core.languages.en_GB???
文章編號8591874
頁(從 - 到)1152-1163
頁數12
期刊IEEE Transactions on Plasma Science
47
發行號2
DOIs
出版狀態已出版 - 2月 2019

指紋

深入研究「Oxidation of TCE by Combining Perovskite-Type Catalyst with DBD」主題。共同形成了獨特的指紋。

引用此