TY - JOUR
T1 - Outlier Removal in Model-Based Missing Value Imputation for Medical Datasets
AU - Huang, Min Wei
AU - Lin, Wei Chao
AU - Tsai, Chih Fong
N1 - Publisher Copyright:
© 2018 Min-Wei Huang et al.
PY - 2018
Y1 - 2018
N2 - Many real-world medical datasets contain some proportion of missing (attribute) values. In general, missing value imputation can be performed to solve this problem, which is to provide estimations for the missing values by a reasoning process based on the (complete) observed data. However, if the observed data contain some noisy information or outliers, the estimations of the missing values may not be reliable or may even be quite different from the real values. The aim of this paper is to examine whether a combination of instance selection from the observed data and missing value imputation offers better performance than performing missing value imputation alone. In particular, three instance selection algorithms, DROP3, GA, and IB3, and three imputation algorithms, KNNI, MLP, and SVM, are used in order to find out the best combination. The experimental results show that that performing instance selection can have a positive impact on missing value imputation over the numerical data type of medical datasets, and specific combinations of instance selection and imputation methods can improve the imputation results over the mixed data type of medical datasets. However, instance selection does not have a definitely positive impact on the imputation result for categorical medical datasets.
AB - Many real-world medical datasets contain some proportion of missing (attribute) values. In general, missing value imputation can be performed to solve this problem, which is to provide estimations for the missing values by a reasoning process based on the (complete) observed data. However, if the observed data contain some noisy information or outliers, the estimations of the missing values may not be reliable or may even be quite different from the real values. The aim of this paper is to examine whether a combination of instance selection from the observed data and missing value imputation offers better performance than performing missing value imputation alone. In particular, three instance selection algorithms, DROP3, GA, and IB3, and three imputation algorithms, KNNI, MLP, and SVM, are used in order to find out the best combination. The experimental results show that that performing instance selection can have a positive impact on missing value imputation over the numerical data type of medical datasets, and specific combinations of instance selection and imputation methods can improve the imputation results over the mixed data type of medical datasets. However, instance selection does not have a definitely positive impact on the imputation result for categorical medical datasets.
UR - http://www.scopus.com/inward/record.url?scp=85042525812&partnerID=8YFLogxK
U2 - 10.1155/2018/1817479
DO - 10.1155/2018/1817479
M3 - 期刊論文
C2 - 29599943
AN - SCOPUS:85042525812
SN - 2040-2295
VL - 2018
JO - Journal of Healthcare Engineering
JF - Journal of Healthcare Engineering
M1 - 1817479
ER -