Operators with real parts at least

Hwa Long Gau, Pei Yuan Wu

研究成果: 雜誌貢獻期刊論文同行評審

摘要

For an Sn-matrix (n ≥ 3) A (a contraction with eigenvalues in the open unit disc and rank (ln = A*A) = 1), we consider the numerical range properties of B = A(ln - A)-1. It is shown that W(B), the numerical range of B, is contained in the half-plane Rez ≥ -1/2, its boundary ∂W(B) contains exactly one line segment L, which lies on Re z = -1/2, and, for any λ in ∂W(B) \ L, M ≡ {x ∈ ℂn: (Bx, x) = λǁxǁ2}, is a subspace of dimension one with the property that x, Bx,...,Bn-1x are linearly independent for any nonzero vector x in M. Using such properties, we prove that any n-by-n matrix C with Re C ≥ (-1/2)ln can be extended, under unitary similarity, to a direct sum D⊕B⊕...⊕B of a diagonal matrix D with diagonals on the line Rez = -1/2 and copies of B of the above type, and, moreover, if ∂W(C) has a common point with ∂W(B)\L, then C has B as a direct summand. This generalizes previous results of the authors for a nilpotent C.

原文???core.languages.en_GB???
頁(從 - 到)1988-1999
頁數12
期刊Linear and Multilinear Algebra
65
發行號10
DOIs
出版狀態已出版 - 3 10月 2017

指紋

深入研究「Operators with real parts at least」主題。共同形成了獨特的指紋。

引用此