TY - JOUR
T1 - One-Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant SUF System under Aerobic Conditions
AU - Wang, Po Hsiang
AU - Nishikawa, Shota
AU - McGlynn, Shawn Erin
AU - Fujishima, Kosuke
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/10/20
Y1 - 2023/10/20
N2 - Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
AB - Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
KW - Fe−S cluster
KW - SUF helper protein
KW - aconitase
KW - cofactor regeneration
KW - reconstituted cell-free protein synthesis
KW - redox enzymes
UR - http://www.scopus.com/inward/record.url?scp=85166768869&partnerID=8YFLogxK
U2 - 10.1021/acssynbio.3c00155
DO - 10.1021/acssynbio.3c00155
M3 - 期刊論文
C2 - 37467114
AN - SCOPUS:85166768869
SN - 2161-5063
VL - 12
SP - 2887
EP - 2896
JO - ACS Synthetic Biology
JF - ACS Synthetic Biology
IS - 10
ER -