On the best possible character of the LQ norm in some a priori estimates for non-divergence form equations in carnot groups

Donatella Danielli, Nicola Garofalo, Duy Minh Nhieu

研究成果: 雜誌貢獻期刊論文同行評審

5 引文 斯高帕斯(Scopus)

摘要

Let G be a group of Heisenberg type with homogeneous dimension Q. For every 0 < ε < Q we construct a non-divergence form operator L ε and a non-trivial solution uε ∈ ℒ2,Q-ε (Ω) ∩ C (Ω̄) to the Dirichlet problem: Lu = 0 in Ω, u = 0 on ∂Ω. This non-uniqueness result shows the impossibility of controlling the maximum of u with an Lp norm of Lu when p < Q. Another consequence is the impossiblity of an Alexandrov-Bakelman type estimate such as supΩ u ≤ C (∫Ω | det(u,ij)| dg)1/m, where m is the dimension of the horizontal layer of the Lie algebra and (u,ij) is the symmetrized horizontal Hessian of u.

原文???core.languages.en_GB???
頁(從 - 到)3487-3498
頁數12
期刊Proceedings of the American Mathematical Society
131
發行號11
DOIs
出版狀態已出版 - 11月 2003

指紋

深入研究「On the best possible character of the LQ norm in some a priori estimates for non-divergence form equations in carnot groups」主題。共同形成了獨特的指紋。

引用此