摘要
This paper investigates flow uniformity in various interconnects and its influence to cell performance of a planar SOFC. A transparent hydraulic platform was used to measure flow uniformity in different rib-channel modules of interconnects. Several 3D numerical models implemented by CFD-RC packages were established to first simulate these hydraulic experiments and then used to evaluate the cell performance of a single-cell stack using different designs of interconnects with different flow uniformity over a wide range of a hydraulic Reynolds number (Re) based on a hydraulic diameter of rib-channels. Numerical flow data are found in good agreement with experimental results. It is proposed that a new design, using simple small guide vanes equally spaced around the feed header of the double-inlet/single-outlet module, can effectively improve the degree of flow uniformity in interconnects resulting in 11% increase of the peak power density (PPD) which can be further increased when applying a Ni-mesh on anode. Numerical analyses demonstrate a strong influence of Re on cell performance, of which appropriate ranges of Re in both anode and cathode sides are identified for achieving a reasonably good PPD while remaining an economic fuel utilization rate and having less temperature variations in the single-cell stack.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 205-213 |
頁數 | 9 |
期刊 | Journal of Power Sources |
卷 | 183 |
發行號 | 1 |
DOIs | |
出版狀態 | 已出版 - 15 8月 2008 |