TY - GEN
T1 - Obtaining Approximately Optimal and Diverse Solutions via Dispersion
AU - Gao, Jie
AU - Goswami, Mayank
AU - Karthik, C. S.
AU - Tsai, Meng Tsung
AU - Tsai, Shih Yu
AU - Yang, Hao Tsung
N1 - Publisher Copyright:
© 2022, Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, s- t shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diverse c-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time.
AB - There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, s- t shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diverse c-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time.
KW - Dispersion problem
KW - Diversity
KW - Maximum matching
KW - Minimum spanning tree
KW - Shortest path
KW - Travelling salesman problem
UR - http://www.scopus.com/inward/record.url?scp=85143265616&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-20624-5_14
DO - 10.1007/978-3-031-20624-5_14
M3 - 會議論文篇章
AN - SCOPUS:85143265616
SN - 9783031206238
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 222
EP - 239
BT - LATIN 2022
A2 - Castañeda, Armando
A2 - Rodríguez-Henríquez, Francisco
A2 - Rodríguez-Henríquez, Francisco
PB - Springer Science and Business Media Deutschland GmbH
T2 - 15th Latin American Symposium on Theoretical Informatics, LATIN 2022
Y2 - 7 November 2022 through 11 November 2022
ER -