Numerical ranges of kms matrices

Hwa Long Gau, Pei Yuan Wu

研究成果: 雜誌貢獻期刊論文同行評審

摘要

We prove the following properties of the numerical range of a KMS matrix Jn(a): (1) W(Jn(a)) is a circular disc if and only if n = 2 and a ≠ 0, (2) its boundary ?W(Jn(a)) contains a line segment if and only if n ≥ 3 and |a| = 1, and (3) the intersection of the boundaries ?W(Jn(a)) and ∂W(Jn(a)[j]) is either the singleton {min s(Re Jn(a))} if n is odd, j = (n + 1)/2 and |a| > 1, or the empty set Ø if otherwise, where, for any n-by-n matrix A, A[j] denotes its jth principal submatrix obtained by deleting its jth row and jth column (1 ≤ j ≤ n), ReA its real part (A + A*)/2, and s(A) its spectrum.

原文???core.languages.en_GB???
頁(從 - 到)583-610
頁數28
期刊Acta Scientiarum Mathematicarum
79
發行號3-4
出版狀態已出版 - 2013

指紋

深入研究「Numerical ranges of kms matrices」主題。共同形成了獨特的指紋。

引用此