Numerical radius inequality for C0 contractions

Pei Yuan Wu, Hwa Long Gau, Ming Cheng Tsai

研究成果: 雜誌貢獻期刊論文同行評審

4 引文 斯高帕斯(Scopus)

摘要

We show that if A is a C0 contraction with minimal function φ{symbol} such that w (A) = w (S (φ{symbol})), where w (·) denotes the numerical radius of an operator and S (φ{symbol}) is the compression of the shift on H2 ⊖ φ{symbol} H2, and B commutes with A, then w (AB) ≤ w (A) {norm of matrix} B {norm of matrix}. This is in contrast to the known fact that if A = S (φ{symbol}) (even on a finite-dimensional space) and B commutes with A, then w (AB) ≤ {norm of matrix} A {norm of matrix} w (B) is not necessarily true. As a consequence, we have w (AB) ≤ w (A) {norm of matrix} B {norm of matrix} for any quadratic operator A and any B commuting with A.

原文???core.languages.en_GB???
頁(從 - 到)1509-1516
頁數8
期刊Linear Algebra and Its Applications
430
發行號5-6
DOIs
出版狀態已出版 - 1 3月 2009

指紋

深入研究「Numerical radius inequality for C0 contractions」主題。共同形成了獨特的指紋。

引用此