Numerical investigation of oxygen impurity distribution during multicrystalline silicon crystal growth using a gas flow guidance device

Ying Yang Teng, Jyh Chen Chen, Chung Wei Lu, Chi Yung Chen

研究成果: 雜誌貢獻期刊論文同行評審

21 引文 斯高帕斯(Scopus)

摘要

Oxygen is one of the most important types of impurities that can cause thermal donor or light-induced degradation in mc-Si solar cells. The objective of this study is to investigate the effect that installing a gas flow guidance device in a mc-Si crystal-growth furnace would have on the oxygen impurity distribution in the melt during the growth process. The installation of such a gas flow guidance device can enhance the gas flow near the free surface, which would allow the argon to carry a greater amount of evaporated SiO gas outside the furnace. Furthermore, the enhanced motion of the gas flow also improves heat transfer near the free surface, which would make the melt vortex separate more easily. The separated melt vortex, which is located near the central region of the melt-crystal interface, directs any oxygen impurity towards the central region of the melt-crystal interface. This is why the oxygen concentration can be reduced by installing the gas flow guidance device. The effectiveness of the gas flow guidance device depends on the vertical distance between it and the free surface (h) as well as the gap between the crucible sidewall and the tip of the device (d). The effect on the oxygen concentration in the melt is significant when smaller values for h and d are adopted.

原文???core.languages.en_GB???
頁(從 - 到)12-17
頁數6
期刊Journal of Crystal Growth
360
發行號1
DOIs
出版狀態已出版 - 1 12月 2012

指紋

深入研究「Numerical investigation of oxygen impurity distribution during multicrystalline silicon crystal growth using a gas flow guidance device」主題。共同形成了獨特的指紋。

引用此