Numerical determination of anomalies in multifrequency electrical impedance tomography

Habib Ammari, Faouzi Triki, Chun Hsiang Tsou

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

The multifrequency electrical impedance tomography consists in retrieving the conductivity distribution of a sample by injecting a finite number of currents with multiple frequencies. In this paper, we consider the case where the conductivity distribution is piecewise constant, takes a constant value outside a single smooth anomaly, and a frequency dependent function inside the anomaly itself. Using an original spectral decomposition of the solution of the forward conductivity problem in terms of Poincaré variational eigenelements, we retrieve the Cauchy data corresponding to the extreme case of a perfect conductor, and the conductivity profile. We then reconstruct the anomaly from the Cauchy data. The numerical experiments are conducted using gradient descent optimization algorithms.

原文???core.languages.en_GB???
頁(從 - 到)427-457
頁數31
期刊European Journal of Applied Mathematics
30
發行號3
DOIs
出版狀態已出版 - 1 6月 2019

指紋

深入研究「Numerical determination of anomalies in multifrequency electrical impedance tomography」主題。共同形成了獨特的指紋。

引用此