Novel interaction between CCR4 and CAF1 in rice CCR4–NOT deadenylase complex

Wei Lun Chou, Yue Lin Chung, Jhen Cheng Fang, Chung An Lu

研究成果: 雜誌貢獻期刊論文同行評審

16 引文 斯高帕斯(Scopus)


Key message: Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4–NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4–NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4–OsCAF1 interaction. Abstract: Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4–NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease–endonuclease–phosphatase domain of OsCCR4a and OsCCR4b exhibited 3′–5′ exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4–OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4–NOT complex.

頁(從 - 到)79-96
期刊Plant Molecular Biology
出版狀態已出版 - 1 1月 2017


深入研究「Novel interaction between CCR4 and CAF1 in rice CCR4–NOT deadenylase complex」主題。共同形成了獨特的指紋。