TY - JOUR
T1 - Nonequilibrium relaxation of a stretched polymer chain
AU - Sheng, Yu Jane
AU - Lai, Pik Yin
AU - Tsao, Heng Kwong
PY - 1997
Y1 - 1997
N2 - The static and nonequilibrium dynamic properties of a single linear polymer chain under a traction force [Formula Presented] is studied by Monte Carlo simulations using a continuous model and by scaling calculations. Chain lengths from [Formula Presented] to 100 are considered. For the static results, our simulation data show that the averaged end-to-end distance [Formula Presented] at weak tension forces and for strong forces [Formula Presented], which are consistent with previous studies. The nonequilibrium relaxation behavior is studied for an initially stretched polymer chain, when the stretching force is removed. Detail chain configurations during the relaxation process are analyzed from the simulation data. Different relaxation dynamics are found for three regions: the linear, Pincus, and model-dependent regimes. The nonequilibrium relaxation time [Formula Presented] is derived in the linear [Formula Presented], Pincus [Formula Presented], and model-dependent regimes. These results are compared with our Monte Carlo data and recent experiments, and are discussed in the light of scaling theories.
AB - The static and nonequilibrium dynamic properties of a single linear polymer chain under a traction force [Formula Presented] is studied by Monte Carlo simulations using a continuous model and by scaling calculations. Chain lengths from [Formula Presented] to 100 are considered. For the static results, our simulation data show that the averaged end-to-end distance [Formula Presented] at weak tension forces and for strong forces [Formula Presented], which are consistent with previous studies. The nonequilibrium relaxation behavior is studied for an initially stretched polymer chain, when the stretching force is removed. Detail chain configurations during the relaxation process are analyzed from the simulation data. Different relaxation dynamics are found for three regions: the linear, Pincus, and model-dependent regimes. The nonequilibrium relaxation time [Formula Presented] is derived in the linear [Formula Presented], Pincus [Formula Presented], and model-dependent regimes. These results are compared with our Monte Carlo data and recent experiments, and are discussed in the light of scaling theories.
UR - http://www.scopus.com/inward/record.url?scp=0000870671&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.56.1900
DO - 10.1103/PhysRevE.56.1900
M3 - 期刊論文
AN - SCOPUS:0000870671
SN - 1063-651X
VL - 56
SP - 1900
EP - 1909
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 2
ER -