摘要
Particle gels are usually formed by density matching or Brownian motion against gravity. However, the suspended state of non-Brownian particles is essential in applications, such as Si-wafer wire sawing. By the addition of alkyl amine, micron-sized SiC suspensions are shown to form particle gel in ethylene glycol. The ratio of storage to loss modulus is about 3, indicating a weak gel. The structure by particle-particle attraction is demonstrated through existing yield stress. With increasing surfactant concentration, the gel forms easier, the sediment layer swells more significantly, and the yield stress is greater accordingly. A gelling mechanism has been proposed and examined.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 234103 |
期刊 | Applied Physics Letters |
卷 | 95 |
發行號 | 23 |
DOIs | |
出版狀態 | 已出版 - 2009 |