Networks with controlled chirality via self-assembly of chiral triblock terpolymers

Hsiao Fang Wang, Po Ting Chiu, Chih Ying Yang, Zhi Hong Xie, Yu Chueh Hung, Jing Yu Lee, Jing Cherng Tsai, Ishan Prasad, Hiroshi Jinnai, Edwin L. Thomas, Rong Ming Ho

研究成果: 雜誌貢獻期刊論文同行評審

31 引文 斯高帕斯(Scopus)


Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (GA) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase. Here, by taking advantage of chirality transfer at different length scales, GA with controlled chirality can be achieved through the self-assembly of a chiral triblock terpolymer. With the homochiral evolution from monomer to multichain domain morphology through self-assembly, the triblock terpolymer composed of a chiral end block with a single-handed helical polymer chain gives the chiral network from the chiral end block having a particular handed network. Our real-space analyses reveal the preferred chiral sense of the network in the GA, leading to a chiral phase.

期刊Science Advances
出版狀態已出版 - 10月 2020


深入研究「Networks with controlled chirality via self-assembly of chiral triblock terpolymers」主題。共同形成了獨特的指紋。