NCUEE-NLP at SemEval-2023 Task 8: Identifying Medical Causal Claims and Extracting PIO Frames Using the Transformer Models

Lung Hao Lee, Yuan Hao Cheng, Jen Hao Yang, Kao Yuan Tien

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

This study describes the model design of the NCUEE-NLP system for the SemEval-2023 Task 8. We use the pre-trained transformer models and fine-tune the task datasets to identify medical causal claims and extract population, intervention, and outcome elements in a Reddit post when a claim is given. Our best system submission for the causal claim identification subtask achieved a F1-score of 70.15%. Our best submission for the PIO frame extraction subtask achieved F1-scores of 37.78% for Population class, 43.58% for Intervention class, and 30.67% for Outcome class, resulting in a macro-averaging F1-score of 37.34%. Our system evaluation results ranked second position among all participating teams.

原文???core.languages.en_GB???
主出版物標題17th International Workshop on Semantic Evaluation, SemEval 2023 - Proceedings of the Workshop
編輯Atul Kr. Ojha, A. Seza Dogruoz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
發行者Association for Computational Linguistics
頁面312-317
頁數6
ISBN(電子)9781959429999
出版狀態已出版 - 2023
事件17th International Workshop on Semantic Evaluation, SemEval 2023, co-located with the 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Hybrid, Toronto, Canada
持續時間: 13 7月 202314 7月 2023

出版系列

名字17th International Workshop on Semantic Evaluation, SemEval 2023 - Proceedings of the Workshop

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???17th International Workshop on Semantic Evaluation, SemEval 2023, co-located with the 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
國家/地區Canada
城市Hybrid, Toronto
期間13/07/2314/07/23

指紋

深入研究「NCUEE-NLP at SemEval-2023 Task 8: Identifying Medical Causal Claims and Extracting PIO Frames Using the Transformer Models」主題。共同形成了獨特的指紋。

引用此