每年專案
摘要
This study describes the model design of the NCUEE-NLP system for the Chinese track of the SemEval-2022 MultiCoNER task. We use the BERT embedding for character representation and train the BiLSTM-CRF model to recognize complex named entities. A total of 21 teams participated in this track, with each team allowed a maximum of six submissions. Our best submission, with a macro-averaging F1-score of 0.7418, ranked the seventh position out of 21 teams.
原文 | ???core.languages.en_GB??? |
---|---|
主出版物標題 | SemEval 2022 - 16th International Workshop on Semantic Evaluation, Proceedings of the Workshop |
編輯 | Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer, Nathan Schneider, Siddharth Singh, Shyam Ratan |
發行者 | Association for Computational Linguistics (ACL) |
頁面 | 1597-1602 |
頁數 | 6 |
ISBN(電子) | 9781955917803 |
出版狀態 | 已出版 - 2022 |
事件 | 16th International Workshop on Semantic Evaluation, SemEval 2022 - Seattle, United States 持續時間: 14 7月 2022 → 15 7月 2022 |
出版系列
名字 | SemEval 2022 - 16th International Workshop on Semantic Evaluation, Proceedings of the Workshop |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 16th International Workshop on Semantic Evaluation, SemEval 2022 |
---|---|
國家/地區 | United States |
城市 | Seattle |
期間 | 14/07/22 → 15/07/22 |
指紋
深入研究「NCUEE-NLP at SemEval-2022 Task 11: Chinese Named Entity Recognition Using the BERT-BiLSTM-CRF Model」主題。共同形成了獨特的指紋。專案
- 1 已完成