NCUEE at MEDIQA 2019: Medical text inference using ensemble BERT-BiLSTM-attention model

Lung Hao Lee, Yi Lu, Po Han Chen, Po Lei Lee, Kuo Kai Shyu

研究成果: 書貢獻/報告類型會議論文篇章同行評審

18 引文 斯高帕斯(Scopus)

摘要

This study describes the model design of the NCUEE system for the MEDIQA challenge at the ACL-BioNLP 2019 workshop. We use the BERT (Bidirectional Encoder Representations from Transformers) as the word embedding method to integrate the BiLSTM (Bidirectional Long Short-Term Memory) network with an attention mechanism for medical text inferences. A total of 42 teams participated in natural language inference task at MEDIQA 2019. Our best accuracy score of 0.84 ranked the top-third among all submissions in the leaderboard.

原文???core.languages.en_GB???
主出版物標題BioNLP 2019 - SIGBioMed Workshop on Biomedical Natural Language Processing, Proceedings of the 18th BioNLP Workshop and Shared Task
發行者Association for Computational Linguistics (ACL)
頁面528-532
頁數5
ISBN(電子)9781950737284
出版狀態已出版 - 2019
事件18th SIGBioMed Workshop on Biomedical Natural Language Processing, BioNLP 2019 - Florence, Italy
持續時間: 1 8月 2019 → …

出版系列

名字BioNLP 2019 - SIGBioMed Workshop on Biomedical Natural Language Processing, Proceedings of the 18th BioNLP Workshop and Shared Task

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???18th SIGBioMed Workshop on Biomedical Natural Language Processing, BioNLP 2019
國家/地區Italy
城市Florence
期間1/08/19 → …

指紋

深入研究「NCUEE at MEDIQA 2019: Medical text inference using ensemble BERT-BiLSTM-attention model」主題。共同形成了獨特的指紋。

引用此