每年專案
摘要
We use Hypergraph Attention Networks (HyperGAT) to recognize multiple labels of Chinese humor texts. We firstly represent a joke as a hypergraph. The sequential hyperedge and semantic hyperedge structures are used to construct hyperedges. Then, attention mechanisms are adopted to aggregate context information embedded in nodes and hyperedges. Finally we use trained HyperGAT to complete the multi-label classification task. Experimental results on the Chinese humor multi-label dataset showed that HyperGAT model outperforms previous sequence-based (CNN, BiLSTM, FastText) and graph-based (Graph-CNN, TextGCN, Text Level GNN) deep learning models.
原文 | ???core.languages.en_GB??? |
---|---|
主出版物標題 | ROCLING 2021 - Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing |
編輯 | Lung-Hao Lee, Chia-Hui Chang, Kuan-Yu Chen |
發行者 | The Association for Computational Linguistics and Chinese Language Processing (ACLCLP) |
頁面 | 257-264 |
頁數 | 8 |
ISBN(電子) | 9789869576949 |
出版狀態 | 已出版 - 2021 |
事件 | 33rd Conference on Computational Linguistics and Speech Processing, ROCLING 2021 - Taoyuan, Taiwan 持續時間: 15 10月 2021 → 16 10月 2021 |
出版系列
名字 | ROCLING 2021 - Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 33rd Conference on Computational Linguistics and Speech Processing, ROCLING 2021 |
---|---|
國家/地區 | Taiwan |
城市 | Taoyuan |
期間 | 15/10/21 → 16/10/21 |
指紋
深入研究「Multi-Label Classification of Chinese Humor Texts Using Hypergraph Attention Networks」主題。共同形成了獨特的指紋。專案
- 1 已完成