TY - JOUR
T1 - Monitoring land subsidence induced by groundwater change using satellite gravimetry and radar interferometry measurements. Case study
T2 - 5th International Conference Planning in the Era of Uncertainty, ICPEU 2021
AU - Pamungkas, Y. A.
AU - Chiang, S. H.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2021/12/2
Y1 - 2021/12/2
N2 - Land subsidence is considered a potential hazard often occurring in densely populated urban areas due to increasing freshwater demands from groundwater pumping. The Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry combined with Sentinel 1 interferometric satellite radar measurement has provided the possibility to monitor land subsidence induced by groundwater change. This study monitored land subsidence induced by groundwater change through satellite observations over Surabaya City, Indonesia, from 2014 to 2019. Persistent Scattered InSAR (PSInSAR) measurement was used to monitor land subsidence by using 114 SLC pairs. As for the groundwater perspective, Global Land Data Assimilation System (GLDAS v.2.2), which contains the Groundwater Storage Anomaly (GWS) derived from GRACE satellite observation, was used to understand groundwater's spatial and temporal variation. The results show a satisfactory agreement of satellite radar measurement with ground measurement (R = 0.96, RMSE = 4.92cm), while satellite gravimetry measurement showed reasonably good agreement with radar measurement as well (R = 0.25). Regarding the magnitude and occurrence of land subsidence over Surabaya City, the result shows that, over the past 5 years, the southern part of the city had the highest subsidence ranging from -10 mm/year to -40 mm/year. Therefore, the results conclude the capability of both satellite gravimetry and radar measurements to monitor land subsidence over an urban area. Thus, this information could be considered as an important decision-making process for disaster management purposes.
AB - Land subsidence is considered a potential hazard often occurring in densely populated urban areas due to increasing freshwater demands from groundwater pumping. The Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry combined with Sentinel 1 interferometric satellite radar measurement has provided the possibility to monitor land subsidence induced by groundwater change. This study monitored land subsidence induced by groundwater change through satellite observations over Surabaya City, Indonesia, from 2014 to 2019. Persistent Scattered InSAR (PSInSAR) measurement was used to monitor land subsidence by using 114 SLC pairs. As for the groundwater perspective, Global Land Data Assimilation System (GLDAS v.2.2), which contains the Groundwater Storage Anomaly (GWS) derived from GRACE satellite observation, was used to understand groundwater's spatial and temporal variation. The results show a satisfactory agreement of satellite radar measurement with ground measurement (R = 0.96, RMSE = 4.92cm), while satellite gravimetry measurement showed reasonably good agreement with radar measurement as well (R = 0.25). Regarding the magnitude and occurrence of land subsidence over Surabaya City, the result shows that, over the past 5 years, the southern part of the city had the highest subsidence ranging from -10 mm/year to -40 mm/year. Therefore, the results conclude the capability of both satellite gravimetry and radar measurements to monitor land subsidence over an urban area. Thus, this information could be considered as an important decision-making process for disaster management purposes.
UR - http://www.scopus.com/inward/record.url?scp=85120945208&partnerID=8YFLogxK
U2 - 10.1088/1755-1315/916/1/012030
DO - 10.1088/1755-1315/916/1/012030
M3 - 編者言
AN - SCOPUS:85120945208
SN - 1755-1307
VL - 916
JO - IOP Conference Series: Earth and Environmental Science
JF - IOP Conference Series: Earth and Environmental Science
IS - 1
M1 - 012030
Y2 - 19 July 2021
ER -