Metal/graphene nanocomposites synthesized with the aid of supercritical fluid for promoting hydrogen release from complex hydrides

De Hao Jiang, Cheng Hsien Yang, Chuan Ming Tseng, Sheng Long Lee, Jeng Kuei Chang

研究成果: 雜誌貢獻期刊論文同行評審

19 引文 斯高帕斯(Scopus)

摘要

With the aid of supercritical CO2, Fe-, Ni-, Pd-, and Au-nanoparticle-decorated nanostructured carbon materials (graphene, activated carbon, carbon black, and carbon nanotubes) are synthesized for catalyzing the dehydrogenation of LiAlH4. The effects of the metal nanoparticle size and distribution, and the type of carbon structure on the hydrogen release properties are investigated. The Fe/graphene nanocomposite, which consists of ∼2 nm Fe particles highly dispersed on graphene nanosheets, exhibits the highest catalytic performance. With this nanocomposite, the initial dehydrogenation temperature can be lowered (from ∼135 °C for pristine LiAlH4) to ∼40 °C without altering the reaction route (confirmed by in situ X-ray diffraction), and 4.5 wt% H2 can be released at 100 °C within 6 min, which is faster by more than 135-fold than the time required to release the same amount of H2 from pristine LiAlH4.

原文???core.languages.en_GB???
頁(從 - 到)12565-12572
頁數8
期刊Nanoscale
6
發行號21
DOIs
出版狀態已出版 - 7 11月 2014

指紋

深入研究「Metal/graphene nanocomposites synthesized with the aid of supercritical fluid for promoting hydrogen release from complex hydrides」主題。共同形成了獨特的指紋。

引用此