Meta-optimization for charger deployment in wireless rechargeable sensor networks

Jehn Ruey Jiang, Yen Chung Chen, Chung Hsien Tsai, Zong Syun Wu

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

This paper proposes the genetic particle swarm optimization charger deployment (GPSOCD) algorithm to deploy as few chargers as possible to fulfill the charging demands of sensors of a wireless rechargeable sensor network (WRSN) to maintain the WRSN sustainability. The proposed GPSOCD algorithm is a meta-optimization algorithm since it uses the genetic algorithm (GA) to encode and optimize the parameters of a particle swarm optimization charger deployment (PSOCD) algorithm. The PSOCD algorithm in turn relies on the particle swarm optimization (PSO) concept for optimizing the charger deployment with the parameters generated by the GA. Simulations are conducted for the performance evaluation of the GPSOCD algorithm. The simulation results show that GPSOCD outperforms other related algorithms.

原文???core.languages.en_GB???
主出版物標題Proceedings of the 3rd IEEE International Conference on Knowledge Innovation and Invention 2020, ICKII 2020
編輯Teen-Hang Meen
發行者Institute of Electrical and Electronics Engineers Inc.
頁面185-188
頁數4
ISBN(電子)9781728193335
DOIs
出版狀態已出版 - 21 8月 2020
事件3rd IEEE International Conference on Knowledge Innovation and Invention, ICKII 2020 - Kaohsiung, Taiwan
持續時間: 21 8月 202023 8月 2020

出版系列

名字Proceedings of the 3rd IEEE International Conference on Knowledge Innovation and Invention 2020, ICKII 2020

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???3rd IEEE International Conference on Knowledge Innovation and Invention, ICKII 2020
國家/地區Taiwan
城市Kaohsiung
期間21/08/2023/08/20

指紋

深入研究「Meta-optimization for charger deployment in wireless rechargeable sensor networks」主題。共同形成了獨特的指紋。

引用此