Maximal Functions, Littlewood-Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting

Yongsheng Han, Ming Yi Lee, Ji Li, Brett D. Wick

研究成果: 雜誌貢獻期刊論文同行評審

摘要

In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood-Paley square function and area integral, Riesz transforms and the atomic decomposition in the multi-parameter flag setting. The novel ingredients in this paper include (1) establishing appropriate discrete Calderón reproducing formulae in the flag setting and a version of the Plancherel-Pólya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels and flag version of harmonic functions; (3) developing an atomic decomposition via the finite speed propagation and area function in terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the multi-parameter Hardy space with the flag structure.

原文???core.languages.en_GB???
頁(從 - 到)1-117
頁數117
期刊Memoirs of the American Mathematical Society
279
發行號1373
DOIs
出版狀態已出版 - 9月 2022

指紋

深入研究「Maximal Functions, Littlewood-Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting」主題。共同形成了獨特的指紋。

引用此