TY - JOUR
T1 - Matrix powers with circular numerical range
AU - Gau, Hwa Long
AU - Wang, Kuo Zhong
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2020/10/15
Y1 - 2020/10/15
N2 - Let [Formula presented], Kn be the n×n weighted shift matrix with weights 2,1,…,1︸n−3,2 for all n≥3, and K∞ be the weighted shift operator with weights 2,1,1,1,…. In this paper, we show that if an n×n nonzero matrix A satisfies W(Ak)=W(A) for all 1≤k≤n, then W(A) cannot be a (nondegenerate) circular disc. Moreover, we also show that W(A)=W(An−1)={z∈C:|z|≤1} if and only if A is unitarily similar to Kn. Finally, we prove that if T is a numerical contraction on an infinite-dimensional Hilbert space H, then limn→∞‖Tnx‖=2 for some unit vector x∈H if and only if T is unitarily similar to an operator of the form K∞⊕T′ with w(T′)≤1.
AB - Let [Formula presented], Kn be the n×n weighted shift matrix with weights 2,1,…,1︸n−3,2 for all n≥3, and K∞ be the weighted shift operator with weights 2,1,1,1,…. In this paper, we show that if an n×n nonzero matrix A satisfies W(Ak)=W(A) for all 1≤k≤n, then W(A) cannot be a (nondegenerate) circular disc. Moreover, we also show that W(A)=W(An−1)={z∈C:|z|≤1} if and only if A is unitarily similar to Kn. Finally, we prove that if T is a numerical contraction on an infinite-dimensional Hilbert space H, then limn→∞‖Tnx‖=2 for some unit vector x∈H if and only if T is unitarily similar to an operator of the form K∞⊕T′ with w(T′)≤1.
KW - Numerical contraction
KW - Numerical radius
KW - Numerical range
UR - http://www.scopus.com/inward/record.url?scp=85085727331&partnerID=8YFLogxK
U2 - 10.1016/j.laa.2020.05.039
DO - 10.1016/j.laa.2020.05.039
M3 - 期刊論文
AN - SCOPUS:85085727331
SN - 0024-3795
VL - 603
SP - 190
EP - 211
JO - Linear Algebra and Its Applications
JF - Linear Algebra and Its Applications
ER -