Matrix powers with circular numerical range

Hwa Long Gau, Kuo Zhong Wang

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Let [Formula presented], Kn be the n×n weighted shift matrix with weights 2,1,…,1︸n−3,2 for all n≥3, and K be the weighted shift operator with weights 2,1,1,1,…. In this paper, we show that if an n×n nonzero matrix A satisfies W(Ak)=W(A) for all 1≤k≤n, then W(A) cannot be a (nondegenerate) circular disc. Moreover, we also show that W(A)=W(An−1)={z∈C:|z|≤1} if and only if A is unitarily similar to Kn. Finally, we prove that if T is a numerical contraction on an infinite-dimensional Hilbert space H, then limn→∞⁡‖Tnx‖=2 for some unit vector x∈H if and only if T is unitarily similar to an operator of the form K⊕T with w(T)≤1.

原文???core.languages.en_GB???
頁(從 - 到)190-211
頁數22
期刊Linear Algebra and Its Applications
603
DOIs
出版狀態已出版 - 15 10月 2020

指紋

深入研究「Matrix powers with circular numerical range」主題。共同形成了獨特的指紋。

引用此