Low Parameter and FLOPs1Speech Densely Connected Convolutional Networks for Keyword Spotting

Tsung Han Tsai, Xin Hui Lin

研究成果: 書貢獻/報告類型會議論文篇章同行評審

摘要

Due to the fast-paced nature of technology, people focus on keyword spotting technology for the use of human-computer interaction (HCI). In this paper, a keyword spotting technique based on the Convolutional neural network (CNN) method is proposed. This network model is modified with the densely connected convolutional network (DenseNet) and uses grouped convolution and deep separable convolution to construct complete keyword spotting tasks. Besides, we change the width and depth of the network to construct a compact variation of the network. We established the network using the Google Speech Command Dataset V2. Compared to different networks, our proposed network sacrifices a small quantity of precision to have a low number of parameters and floating-point operations (FLOPs).

原文???core.languages.en_GB???
主出版物標題Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面271-272
頁數2
ISBN(電子)9781665470506
DOIs
出版狀態已出版 - 2022
事件2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, Taiwan
持續時間: 6 7月 20228 7月 2022

出版系列

名字Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
國家/地區Taiwan
城市Taipei
期間6/07/228/07/22

指紋

深入研究「Low Parameter and FLOPs1Speech Densely Connected Convolutional Networks for Keyword Spotting」主題。共同形成了獨特的指紋。

引用此