Line segments and elliptic arcs on the boundary of a numerical range

Hwa Long Gau, Pei Yuan Wu

研究成果: 雜誌貢獻期刊論文同行評審

11 引文 斯高帕斯(Scopus)

摘要

For an n-by-n complex matrix A, we consider the numbers of line segments and elliptic arcs on the boundary W(A) of its numerical range. We show that (a) if [image omitted] and A has an (n - 1)-by-(n - 1) submatrix B with W(B) an elliptic disc, then there can be at most 2n - 2 line segments on W(A), and (b) if [image omitted], then W(A) contains at most (n - 2) arcs of any ellipse. Moreover, both upper bounds are sharp. For nilpotent matrices, we also obtain analogous results with sharper bounds.

原文???core.languages.en_GB???
頁(從 - 到)131-142
頁數12
期刊Linear and Multilinear Algebra
56
發行號1-2
DOIs
出版狀態已出版 - 1月 2008

指紋

深入研究「Line segments and elliptic arcs on the boundary of a numerical range」主題。共同形成了獨特的指紋。

引用此