Less Parameterization Inception-Based End to End CNN Model for EEG Seizure Detection

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)


Many deep-learning-based seizure detection algorithms have achieved good classification, which usually outperformed traditional machine-learning-based algorithms. However, the hand-engineered features increase the computational complexity and potentially have an ineffectiveness problem for the category. Therefore, this paper proposes a novel end-to-end deep-learning model comprising an inception module and a residual module to analyze the multi-scales of original EEG signals and realize seizure detection without feature extraction. Experiments were conducted and evaluated on the Bonn dataset and the CHB-MIT dataset. In the subject-dependent experiments, our model achieved an average F1-score of 69.34% on the CHB-MIT dataset. In subject-independent experiments, our method achieved an average accuracy of 99.04% on the Bonn dataset and an average F1-score of 37.31% on the CHB-MIT dataset. A series of analyses confirmed that our proposed model has better classification performance and lower computational complexity than existing end-to-end seizure detection models.

頁(從 - 到)49172-49182
期刊IEEE Access
出版狀態已出版 - 2023


深入研究「Less Parameterization Inception-Based End to End CNN Model for EEG Seizure Detection」主題。共同形成了獨特的指紋。