Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels

研究成果: 雜誌貢獻期刊論文同行評審

80 引文 斯高帕斯(Scopus)

摘要

A least-squares (LS) channel estimation (CE) technique for mobile orthogonal frequency-division multiplexing (OFDM) communications over a rapidly time-varying frequency-selective fading channel is investigated in this paper. The proposed technique keeping the comb-type pilot arrangement can achieve a low error probability by accurately estimating channel impulse response (CIR) and effectively tracking rapid CIR time variations. The LS CE technique proposed here is conducted in the time domain (TD). Meanwhile, a generic estimator is serially performed block by block without assistance from a priori channel information and without increasing computational complexity. By taking advantage of linearly frequency-modulated (LFM) or pseudorandom signals transceived for jointly sounding pilot subchannels, the proposed LS CE can inherently perform pseudonoise (PN) matched filtering (MF) to suppress multipath interference (MPI) caused by frequency-selective fading and intercarrier interference (ICI) resulting from data subchannels. The optimality of the proposed technique is verified by taking Cramer-Rao lower bounds (CRLBs) into comparison both on noise- and interference-dominant signal-to-noise ratio (SNR) conditions. In addition, the dual optimality of the LFM and PN pilot symbols is verified for both TD and frequency-domain (FD) CEs. Furthermore, the proposed technique also exhibits good resistance against residual timing errors occurring with the discrete Fourier transform (DFT) demodulation. Extensive computer simulations in conjunction with statistical derivations show the superiority of the proposed technique.

原文???core.languages.en_GB???
頁(從 - 到)3538-3550
頁數13
期刊IEEE Transactions on Vehicular Technology
57
發行號6
DOIs
出版狀態已出版 - 2008

指紋

深入研究「Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels」主題。共同形成了獨特的指紋。

引用此