每年專案
摘要
This paper proposes a framework to automatically create cartoon images with low computation resources and small training datasets. The system segments and reassembles regions according to the topologies learned from example images. Region relationship trees are constructed for training images with no requirement of manual labeling. An enhanced clustering mechanism with no prior knowledge of cluster number is designed to effectively group components into desired groups for image creation. Compared with methods based on Generative Adversarial Networks, the proposed framework which performs automatic reasoning, clustering and reassembling regions of cartoon images can create better images with a very small amount of training samples.
原文 | ???core.languages.en_GB??? |
---|---|
主出版物標題 | 2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings |
發行者 | IEEE Computer Society |
頁面 | 4684-4688 |
頁數 | 5 |
ISBN(電子) | 9781538662496 |
DOIs | |
出版狀態 | 已出版 - 9月 2019 |
事件 | 26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan 持續時間: 22 9月 2019 → 25 9月 2019 |
出版系列
名字 | Proceedings - International Conference on Image Processing, ICIP |
---|---|
卷 | 2019-September |
ISSN(列印) | 1522-4880 |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 26th IEEE International Conference on Image Processing, ICIP 2019 |
---|---|
國家/地區 | Taiwan |
城市 | Taipei |
期間 | 22/09/19 → 25/09/19 |
指紋
深入研究「Learning to Create Cartoon Images from a Very Small Dataset」主題。共同形成了獨特的指紋。專案
- 1 已完成