TY - JOUR
T1 - Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect
AU - Batsaikhan, Erdembayalag
AU - Lee, Chi Hung
AU - Hsu, Han
AU - Wu, Chun Ming
AU - Peng, Jen Chih
AU - Ma, Ma Hsuan
AU - Deleg, Sangaa
AU - Li, Wen Hsien
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/3/3
Y1 - 2020/3/3
N2 - Magnetic properties of fully oxygenated bare CuO nanoparticles have been investigated using magnetization, X-ray diffraction, neutron diffraction, and Raman scattering measurements. The Langevin field profile is clearly revealed in the isothermal magnetization of 8.8 nm CuO nanoparticle assembly even at 300 K, revealing a 172 times enhancement of the ferromagnetic responses over that of bulk CuO. Surface magnetization of 8.8 nm CuO reaches 18% of the core magnetization. The Cu spins in 8.8 nm CuO order below 400 K, which is 1.7 times higher than the 231 K observed in bulk CuO. A relatively simple magnetic structure that may be indexed using a modulation vector of (0.2, 0, 0.2) was found for the 8.8 nm CuO, but no magnetic incommensurability was observed in bulk CuO. The Cu spins in 8.8 nm CuO form spin density waves with length scales of 5 chemical unit cells long along the crystallographic a- and c-axis directions. Considerable amounts of electronic charge shift from around the Cu lattice sites toward the interconnecting regions of two neighboring Cu-Cu ions, resulting in a stronger ferromagnetic direct exchange interaction for the neighboring Cu spins in 8.8 nm CuO.
AB - Magnetic properties of fully oxygenated bare CuO nanoparticles have been investigated using magnetization, X-ray diffraction, neutron diffraction, and Raman scattering measurements. The Langevin field profile is clearly revealed in the isothermal magnetization of 8.8 nm CuO nanoparticle assembly even at 300 K, revealing a 172 times enhancement of the ferromagnetic responses over that of bulk CuO. Surface magnetization of 8.8 nm CuO reaches 18% of the core magnetization. The Cu spins in 8.8 nm CuO order below 400 K, which is 1.7 times higher than the 231 K observed in bulk CuO. A relatively simple magnetic structure that may be indexed using a modulation vector of (0.2, 0, 0.2) was found for the 8.8 nm CuO, but no magnetic incommensurability was observed in bulk CuO. The Cu spins in 8.8 nm CuO form spin density waves with length scales of 5 chemical unit cells long along the crystallographic a- and c-axis directions. Considerable amounts of electronic charge shift from around the Cu lattice sites toward the interconnecting regions of two neighboring Cu-Cu ions, resulting in a stronger ferromagnetic direct exchange interaction for the neighboring Cu spins in 8.8 nm CuO.
UR - http://www.scopus.com/inward/record.url?scp=85080919222&partnerID=8YFLogxK
U2 - 10.1021/acsomega.9b02913
DO - 10.1021/acsomega.9b02913
M3 - 期刊論文
AN - SCOPUS:85080919222
SN - 2470-1343
VL - 5
SP - 3849
EP - 3856
JO - ACS Omega
JF - ACS Omega
IS - 8
ER -