Large Basic Cone and Sparse Subspace Constrained Nonnegative Matrix Factorization with Kullback-Leibler Divergence for Data Representation

Viet Hang Duong, Manh Quan Bui, Yung Hui Li, Jia Ching Wang, Tzu Chiang Tai

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

In this article, a new constrained NMF model with Kullback-Leibler (KL) divergence is developed for data representation. It is called large basic cone and sparse representation-constrained nonnegative matrix factorization with Kullback-Leibler divergence (conespaNMF_KL). It achieves sparseness from a large simplicial cone constraint on the base and sparse regularize on the extracted features.

原文???core.languages.en_GB???
文章編號8736757
頁(從 - 到)39-47
頁數9
期刊IEEE Intelligent Systems
34
發行號4
DOIs
出版狀態已出版 - 1 7月 2019

指紋

深入研究「Large Basic Cone and Sparse Subspace Constrained Nonnegative Matrix Factorization with Kullback-Leibler Divergence for Data Representation」主題。共同形成了獨特的指紋。

引用此