每年專案
摘要
In this article, a new constrained NMF model with Kullback-Leibler (KL) divergence is developed for data representation. It is called large basic cone and sparse representation-constrained nonnegative matrix factorization with Kullback-Leibler divergence (conespaNMF_KL). It achieves sparseness from a large simplicial cone constraint on the base and sparse regularize on the extracted features.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 8736757 |
頁(從 - 到) | 39-47 |
頁數 | 9 |
期刊 | IEEE Intelligent Systems |
卷 | 34 |
發行號 | 4 |
DOIs | |
出版狀態 | 已出版 - 1 7月 2019 |
指紋
深入研究「Large Basic Cone and Sparse Subspace Constrained Nonnegative Matrix Factorization with Kullback-Leibler Divergence for Data Representation」主題。共同形成了獨特的指紋。專案
- 1 已完成