TY - JOUR
T1 - Kinetic origin of grain boundary migration, grain coalescence, and defect reduction in the crystallization of quenched two-dimensional Yukawa liquids
AU - Chen, Meng Chun
AU - Yang, Chi
AU - Lin, I.
N1 - Publisher Copyright:
© 2014 American Physical Society.
PY - 2014/11/5
Y1 - 2014/11/5
N2 - The kinetic origin of grain boundary migration, grain coalescence, and defect reduction in the crystallization of quenched two-dimensional Yukawa liquids are numerically investigated. It is found that, in grain coalescence, stick-slip cracking the region in front of the grain boundary into smaller subgrains corotating with small angle, followed by healing, is the key for aligning lattice misorientation and inducing grain boundary stick-slip advance. Cracking is initiated from the weakly interlocked dislocation along its Burgers vector, which in turn causes dislocation motion along the crack. The cascaded scattering and recombination of two dislocations with 60â and 120â Burgers vector angle difference into two and one dislocations are the major processes for dislocation motion and reduction, respectively, in grain boundary migration. A rough grain boundary with large curvature easily supports the above process and induces high grain boundary mobility. Along a straight smooth grain boundary, the parallel Burgers vectors of the string of dislocations hinder defect reduction and induce coalescence stagnation.
AB - The kinetic origin of grain boundary migration, grain coalescence, and defect reduction in the crystallization of quenched two-dimensional Yukawa liquids are numerically investigated. It is found that, in grain coalescence, stick-slip cracking the region in front of the grain boundary into smaller subgrains corotating with small angle, followed by healing, is the key for aligning lattice misorientation and inducing grain boundary stick-slip advance. Cracking is initiated from the weakly interlocked dislocation along its Burgers vector, which in turn causes dislocation motion along the crack. The cascaded scattering and recombination of two dislocations with 60â and 120â Burgers vector angle difference into two and one dislocations are the major processes for dislocation motion and reduction, respectively, in grain boundary migration. A rough grain boundary with large curvature easily supports the above process and induces high grain boundary mobility. Along a straight smooth grain boundary, the parallel Burgers vectors of the string of dislocations hinder defect reduction and induce coalescence stagnation.
UR - http://www.scopus.com/inward/record.url?scp=84913572925&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.90.050401
DO - 10.1103/PhysRevE.90.050401
M3 - 期刊論文
AN - SCOPUS:84913572925
SN - 1539-3755
VL - 90
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 5
M1 - 050401
ER -