Ionospheric scintillation prediction on s4 and roti parameters using artificial neural network and genetic algorithm

Alireza Atabati, Mahdi Alizadeh, Harald Schuh, Lung Chih Tsai

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

Irregularities in electron density usually correlate with ionospheric plasma perturbations. These variations causing radio signal fluctuations, in response, generate ionospheric scintillations that frequently occur in low-latitude regions. In this research, the combination of an artificial neural network (ANN) with the genetic algorithm (GA) was implemented to predict ionospheric scintillations. The GA method was considered for obtaining the ANN model’s initial weights. This procedure was applied to GNSS observations at GUAM (13.58E, 144.86N, 201.922H) station for the daily prediction of ionospheric amplitude scintillations via predicting the signal-to-noise ratio (S4) or via prediction of the rate of TEC index (ROTI). Thirty-day modeling was carried out for three months in January, March, and July, representing different seasons of the winter solstice, equinox, and summer solstice during three different years, 2015, 2017, and 2020, with different solar activities. The models, along with ionospheric physical data, were used for the daily prediction of ionospheric scintillations for the consequent day after the modeling. The prediction results were evaluated using S4 derived from GNSS observations at GUAM station. The designed model has the ability to predict daily ionospheric scintillations with an accuracy of about 81% for the S4 and about 80% for the ROTI.

原文???core.languages.en_GB???
文章編號2092
期刊Remote Sensing
13
發行號11
DOIs
出版狀態已出版 - 1 6月 2021

指紋

深入研究「Ionospheric scintillation prediction on s4 and roti parameters using artificial neural network and genetic algorithm」主題。共同形成了獨特的指紋。

引用此