跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Investigation of Weighted Least Squares Methods for Multitarget Tracking with Multisensor Data Fusion
Dah Chung Chang
, Yu Cheng Chang
通訊工程學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
2
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Investigation of Weighted Least Squares Methods for Multitarget Tracking with Multisensor Data Fusion」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Wireless Sensor Networks
100%
Weighted Least Square Method
100%
Multi-target Tracking
100%
Multi-sensor Fusion
100%
Low Bandwidth
50%
Tracking Performance
50%
Low Power Consumption
50%
Root Mean Square Error
50%
Tracking Trajectory
50%
Multiple Sensors
50%
Error Performance
50%
Multi-target
50%
Hot Research Topics
50%
Extended Kalman Filter
50%
Received Signal Strength
50%
Received Signal
50%
Communication Environment
50%
Path Loss
50%
Loss Data
50%
Location Information
50%
Weighted Least Squares
50%
Evenly Distributed
50%
Accurate Location
50%
Collision Avoidance Algorithm
50%
Estimation Information
50%
Fusion Center
50%
Probabilistic Data Association Filter
50%
Trajectory Tracking
50%
Distance Estimation
50%
Optimal Position
50%
Information Signal
50%
Probability Hypothesis Density Filter
50%
Trilateration Method
50%
Clutter Interference
50%
Target Localization
50%
Engineering
Square Method
100%
Least Square
100%
Wireless Sensor Network
100%
Simulation Result
50%
Multiple Sensor
50%
Error Performance
50%
Collision Avoidance
50%
Extended Kalman Filter
50%
Received Signal Strength
50%
Root-Mean-Squared Error
50%
Path Loss
50%
Multiple Target
50%
Location Information
50%
Distance Estimation
50%
Trilateration
50%
Target Localization
50%
Computer Science
Least Squares Method
100%
multisensor data fusion
100%
Wireless Sensor Network
100%
Research Topic
50%
Information Loss
50%
Received Signal Strength
50%
Communication Environment
50%
Location Information
50%
Multiple Sensor
50%
Lower Energy Consumption
50%
data association
50%
Application Scenario
50%
Extended Kalman Filter
50%
Root Mean Squared Error
50%
probability hypothesis density filter
50%