TY - JOUR
T1 - Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area
AU - Cheng, Fang Yi
AU - Hsu, Yu Ching
AU - Lin, Pay Liam
AU - Lin, Tang Huang
PY - 2013/3
Y1 - 2013/3
N2 - The U.S. Geological Survey (USGS) land use (LU) data employed in the Weather Research and Forecasting (WRF) model classify most LU types in Taiwan as mixtures of irrigated cropland and forest, which is not an accurate representation of current conditions. The WRF model released after version 3.1 provides an alternative LU dataset retrieved from 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products. The MODIS data correctly identify most LU-type distributions, except that they represent western Taiwan as being extremely urbanized. A new LU dataset, obtained using 2007 Systeme Probatoire d'Observation de la Terre (SPOT) satellite imagery [from the National Central University of Taiwan (NCU)], accurately shows the major metropolitan cities as well as other land types. Three WRF simulations were performed, each with a different LU dataset. Owing to the overestimation of urban area in the MODIS data, WRF-MODIS overpredicts daytime temperatures in western Taiwan. Conversely, WRF-USGS underpredicts daytime temperatures. The temperature variation estimated by WRF-NCU falls between those estimated by the other two simulations. Over the ocean, WRF-MODIS predicts the strongest onshore sea breezes, owing to the enhanced temperature gradient between land and sea, while WRF-USGS predicts the weakest onshore flow. The intensity of the onshore breeze predicted by WRF-NCU is between those predicted by WRF-MODIS and WRF-USGS. Over Taiwan, roughness length is the key parameter influencing wind speed. WRF-USGS significantly overpredicts the surface wind speed owing to the shorter roughness length of its elements, while the surface wind speeds estimated by WRF-NCU andWRF-MODIS are in better agreement with the observed data.
AB - The U.S. Geological Survey (USGS) land use (LU) data employed in the Weather Research and Forecasting (WRF) model classify most LU types in Taiwan as mixtures of irrigated cropland and forest, which is not an accurate representation of current conditions. The WRF model released after version 3.1 provides an alternative LU dataset retrieved from 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products. The MODIS data correctly identify most LU-type distributions, except that they represent western Taiwan as being extremely urbanized. A new LU dataset, obtained using 2007 Systeme Probatoire d'Observation de la Terre (SPOT) satellite imagery [from the National Central University of Taiwan (NCU)], accurately shows the major metropolitan cities as well as other land types. Three WRF simulations were performed, each with a different LU dataset. Owing to the overestimation of urban area in the MODIS data, WRF-MODIS overpredicts daytime temperatures in western Taiwan. Conversely, WRF-USGS underpredicts daytime temperatures. The temperature variation estimated by WRF-NCU falls between those estimated by the other two simulations. Over the ocean, WRF-MODIS predicts the strongest onshore sea breezes, owing to the enhanced temperature gradient between land and sea, while WRF-USGS predicts the weakest onshore flow. The intensity of the onshore breeze predicted by WRF-NCU is between those predicted by WRF-MODIS and WRF-USGS. Over Taiwan, roughness length is the key parameter influencing wind speed. WRF-USGS significantly overpredicts the surface wind speed owing to the shorter roughness length of its elements, while the surface wind speeds estimated by WRF-NCU andWRF-MODIS are in better agreement with the observed data.
KW - Land use
UR - http://www.scopus.com/inward/record.url?scp=84875388997&partnerID=8YFLogxK
U2 - 10.1175/JAMC-D-12-0109.1
DO - 10.1175/JAMC-D-12-0109.1
M3 - 期刊論文
AN - SCOPUS:84875388997
SN - 1558-8424
VL - 52
SP - 570
EP - 587
JO - Journal of Applied Meteorology and Climatology
JF - Journal of Applied Meteorology and Climatology
IS - 3
ER -