Interpretation of in-situ test data using artificial neural networks

C. H. Juang, Pin Sien Lin, Tien Hsiung Tso

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Establishing a realistic working profile of soil properties has been, and is still, one of the most challenging problems facing geotechnical engineers. A neural network approach is used to tackle this problem. Source data of a series of standard penetration tests (SPT) performed at the Texas A&M University's National Geotechnical Experimental Site are used for training and testing artificial neural networks. The developed neural network is shown able to predict the SPT N-values of the site studied. Data are then generated for constructing the profiles of the N-values using the trained neural network. The study shows that the potential of neural networks in site characterization is significant.

原文???core.languages.en_GB???
主出版物標題Proceedings - Intelligent Information Systems, IIS 1997
編輯Hojjat Adeli
發行者Institute of Electrical and Electronics Engineers Inc.
頁面168-172
頁數5
ISBN(電子)0818682183, 9780818682186
DOIs
出版狀態已出版 - 1997
事件1997 International Conference on Intelligent Information Systems, IIS 1997 - Grand Bahama Island, Bahamas
持續時間: 8 12月 199710 12月 1997

出版系列

名字Proceedings - Intelligent Information Systems, IIS 1997

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???1997 International Conference on Intelligent Information Systems, IIS 1997
國家/地區Bahamas
城市Grand Bahama Island
期間8/12/9710/12/97

指紋

深入研究「Interpretation of in-situ test data using artificial neural networks」主題。共同形成了獨特的指紋。

引用此