Interior permanent magnet synchronous motor drive system with machine learning-based maximum torque per ampere and flux-weakening control

Faa Jeng Lin, Yi Hung Liao, Jyun Ru Lin, Wei Ting Lin

研究成果: 雜誌貢獻期刊論文同行評審

16 引文 斯高帕斯(Scopus)

摘要

An interior permanent magnet synchronous motor (IPMSM) drive system with machine learning-based maximum torque per ampere (MTPA) as well as flux-weakening (FW) control was developed and is presented in this study. Since the control performance of IPMSM varies significantly due to the temperature variation and magnetic saturation, a machine learning-based MTPA control using a Petri probabilistic fuzzy neural network with an asymmetric membership function (PPFNNAMF) was developed. First, the d-axis current command, which can achieve the MTPA control of the IPMSM, is derived. Then, the difference value of the dq-axis inductance of the IPMSM is obtained by the PPFNN-AMF and substituted into the d-axis current command of the MTPA to alleviate the saturation effect in the constant torque region. Moreover, a voltage control loop, which can limit the inverter output voltage to the maximum output voltage of the inverter at high-speed, is designed for the FW control in the constant power region. In addition, an adaptive complementary sliding mode (ACSM) speed controller is developed to improve the transient response of the speed control. Finally, some experimental results are given to demonstrate the validity of the proposed high-performance control strategies.

原文???core.languages.en_GB???
文章編號346
期刊Energies
14
發行號2
DOIs
出版狀態已出版 - 2 1月 2021

指紋

深入研究「Interior permanent magnet synchronous motor drive system with machine learning-based maximum torque per ampere and flux-weakening control」主題。共同形成了獨特的指紋。

引用此