TY - JOUR
T1 - Integrating Landsat Imageries and Digital Elevation Models to Infer Water Level Change in Hoover Dam
AU - Tseng, Kuo Hsin
AU - Shum, C. K.
AU - Kim, Jin Woo
AU - Wang, Xianwei
AU - Zhu, Kefeng
AU - Cheng, Xiao
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2016/4
Y1 - 2016/4
N2 - The Thematic Mapper onboard Landsat 4, 5, and Enhanced Thematic Mapper Plus (TM/ETM+) onboard Landsat 7 have frequency bands (green and SWIR) to effectively measure water body extents and their changes via the Modified Normalized Difference Water Index (MNDWI). Here, we developed a technique, called the thematic imagery-altimetry system (TIAS), to infer the vertical water changes from MNDWI horizontal water extent changes by integrating long-term TM/ETM+ imageries with available digital elevation models (DEMs). The result is a technique to quantify water level changes of natural or artificial water bodies over two decades. Several DEMs were used to compute intersects with TM/ETM+ water extent time series to evaluate the robustness of the technique. These DEMs include: the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Map version 2 (ASTER-GDEM2, at 1 arcsec resolution), the Shuttle Radar Topography Mission version 2 (SRTM C-band at 1 arcsec), and the Global Multiresolution Terrain Elevation Data (GMTED2010 at 7.5 arcsec). We demonstrated our technique near Hoover Dam (HD) in Lake Mead to quantify its respective decadal water level changes. The dammed water had experienced extraordinary level variation in the past 20 years due to natural decline from intake or artificial impoundments. The discrepancy of the HD water level changes from an analysis of 32-year (1984-2015) time series, including 584 Landsat scenes, using the GMTED2010 DEM, has a RMSE reached 0.85 ± 0.63 m (91% of data) as compared with in situ stage record.
AB - The Thematic Mapper onboard Landsat 4, 5, and Enhanced Thematic Mapper Plus (TM/ETM+) onboard Landsat 7 have frequency bands (green and SWIR) to effectively measure water body extents and their changes via the Modified Normalized Difference Water Index (MNDWI). Here, we developed a technique, called the thematic imagery-altimetry system (TIAS), to infer the vertical water changes from MNDWI horizontal water extent changes by integrating long-term TM/ETM+ imageries with available digital elevation models (DEMs). The result is a technique to quantify water level changes of natural or artificial water bodies over two decades. Several DEMs were used to compute intersects with TM/ETM+ water extent time series to evaluate the robustness of the technique. These DEMs include: the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Map version 2 (ASTER-GDEM2, at 1 arcsec resolution), the Shuttle Radar Topography Mission version 2 (SRTM C-band at 1 arcsec), and the Global Multiresolution Terrain Elevation Data (GMTED2010 at 7.5 arcsec). We demonstrated our technique near Hoover Dam (HD) in Lake Mead to quantify its respective decadal water level changes. The dammed water had experienced extraordinary level variation in the past 20 years due to natural decline from intake or artificial impoundments. The discrepancy of the HD water level changes from an analysis of 32-year (1984-2015) time series, including 584 Landsat scenes, using the GMTED2010 DEM, has a RMSE reached 0.85 ± 0.63 m (91% of data) as compared with in situ stage record.
KW - Inland water altimetry
KW - Shoreline detection
KW - lake level
KW - remote sensing
UR - http://www.scopus.com/inward/record.url?scp=84954549227&partnerID=8YFLogxK
U2 - 10.1109/JSTARS.2015.2500599
DO - 10.1109/JSTARS.2015.2500599
M3 - 期刊論文
AN - SCOPUS:84954549227
SN - 1939-1404
VL - 9
SP - 1696
EP - 1709
JO - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
JF - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IS - 4
M1 - 7383227
ER -