Integrability of the sub-riemannian mean curvature of surfaces in the heisenberg group

D. Danielli, N. Garofalo, D. M. Nhieu

研究成果: 雜誌貢獻期刊論文同行評審

11 引文 斯高帕斯(Scopus)

摘要

The problem of the local summability of the sub-Riemannian mean curvature H of a hypersurface M in the Heisenberg group, or in more general Carnot groups, near the characteristic set of M arises naturally in several questions in geometric measure theory. We construct an example which shows that the sub-Riemannian mean curvature H of a C2 surface M in the Heisenberg group H1 in general fails to be integrable with respect to the Riemannian volume on M.

原文???core.languages.en_GB???
頁(從 - 到)811-821
頁數11
期刊Proceedings of the American Mathematical Society
140
發行號3
DOIs
出版狀態已出版 - 2012

指紋

深入研究「Integrability of the sub-riemannian mean curvature of surfaces in the heisenberg group」主題。共同形成了獨特的指紋。

引用此