Integrability, mean convergence, and parseval's formula for double trigonometric series

Chang Pao Chen, Chin Cheng Lin

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Consider the double trigonometric series whose coefficients satisfy conditions of bounded variation of order (p, 0), (0, p), and (p, p) with the weight (|j|̄ |k|̄)p-1 for some p > 1. The following properties concerning the rectangular partial sums of this series are obtained: (a) regular convergence; (b) uniform convergence; (c) weighted Lr-integrability and weighted Lr-convergence; and (d) Parseval's formula. Our results generalize Bary [1, p. 656], Boas [2, 3], Chen [6, 7], Kolmogorov [9], Marzug [10], Móricz [11, 12, 13, 14], Ul'janov [15], Young [16], and Zygmund [17, p. 4].

原文???core.languages.en_GB???
頁(從 - 到)191-212
頁數22
期刊Taiwanese Journal of Mathematics
2
發行號2
DOIs
出版狀態已出版 - 6月 1998

指紋

深入研究「Integrability, mean convergence, and parseval's formula for double trigonometric series」主題。共同形成了獨特的指紋。

引用此