Infusing satellite data into aerosol forecast for near real-time episode detection and diagnosis in East Asia

Sheng Po Chen, Cheng Hsuan (Sarah) Lu, James E. Davies, Chang Feng Ou-Yang, Neng Huei Lin, Amy K. Huff, Bradley R. Pierce, Shobha Kondragunta, Jia Lin Wang

研究成果: 雜誌貢獻期刊論文同行評審

摘要

A near-real-time (NRT) aerosol forecast and diagnostic approach is developed based on the system of Infusing satellite Data into Environmental Applications for East Asia, herein denoted as IDEA-EA. The design incorporates a 0.5-degree Global Forecast System (GFS) and Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol and cloud retrievals for meteorological and remote sensing inputs. The primary output of IDEA-EA includes aerosol forward and backward air mass trajectory forecasts, migration visualization, and data synthesis purposed for NRT aerosol detection, monitoring, and source tracing in East Asia. Two aerosol episodes of Southeast Asia (SEA) biomass burning and Chinese haze infusion with Gobi dust are illustrated by IDEA-EA to demonstrate its forecast and source tracing capabilities. In the case of SEA biomass burning (late March 2021), forward trajectories of IDEA-EA forecasted air masses with high aerosol optical depth (AOD) from SEA affecting Taiwan. The IDEA-EA forecasts were verified by increased AOD and surface PM2.5 observations at a mountain site. In the case of the Chinese haze (October 30, 2019), backward trajectories from the northern tip of Taiwan traced air masses back to the east coast of mainland China and possibly further to the Gobi Desert. Compared with conventional numerical model simulations, the combination of the state-of-the-art aerosol remote sensing and trajectory modeling in IDEA-EA provides a cost-effective alternative for air quality management.

原文???core.languages.en_GB???
文章編號158797
期刊Science of the Total Environment
856
DOIs
出版狀態已出版 - 15 1月 2023

指紋

深入研究「Infusing satellite data into aerosol forecast for near real-time episode detection and diagnosis in East Asia」主題。共同形成了獨特的指紋。

引用此