In-Silico Selection of Aptamer Targeting SARS-CoV-2 Spike Protein

Yu Chao Lin, Wen Yih Chen, En Te Hwu, Wen Pin Hu

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Aptamers are single-stranded, short DNA or RNA oligonucleotides that can specifically bind to various target molecules. To diagnose the infected cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in time, numerous conventional methods are applied for viral detection via the amplification and quantification of DNA or antibodies specific to antigens on the virus. Herein, we generated a large number of mutated aptamer sequences, derived from a known sequence of receptor-binding domain (RBD)-1C aptamer, specific to the RBD of SARS-CoV-2 spike protein (S protein). Structural similarity, molecular docking, and molecular dynamics (MD) were utilized to screen aptamers and characterize the detailed interactions between the selected aptamers and the S protein. We identified two mutated aptamers, namely, RBD-1CM1 and RBD-1CM2, which presented better docking results against the S protein compared with the RBD-1C aptamer. Through the MD simulation, we further confirmed that the RBD-1CM1 aptamer can form the most stable complex with the S protein based on the number of hydrogen bonds formed between the two bio-molecules. Based on the experimental data of quartz crystal microbalance (QCM), the RBD-1CM1 aptamer could produce larger signals in mass change and exhibit an improved binding affinity to the S protein. Therefore, the RBD-1CM1 aptamer, which was selected from 1431 mutants, was the best potential candidate for the detection of SARS-CoV-2. The RBD-1CM1 aptamer can be an alter-native biological element for the development of SARS-CoV-2 diagnostic testing.

原文???core.languages.en_GB???
文章編號5810
期刊International Journal of Molecular Sciences
23
發行號10
DOIs
出版狀態已出版 - 1 5月 2022

指紋

深入研究「In-Silico Selection of Aptamer Targeting SARS-CoV-2 Spike Protein」主題。共同形成了獨特的指紋。

引用此