摘要
Atomic-force microscopic images, x-ray diffraction patterns, Urbach energies and photoluminescence quenching experiments show that the interfacial contact quality between the hydrophobic [6,6]-phenyl-C61-buttric acid methyl ester (PCBM) thin film and hydrophilic CH3NH3PbI3 (MAPbI3) thin film can be effectively improved by using a binary antisolvent mixture (toluene:dichloromethane or chlorobenzene:dichloromethane) in the anti-solvent mixture-mediated nucleation process, which increases the averaged power conversion efficiency of the resultant PEDOT:PSS (P3CT-Na) thin film based MAPbI3 solar cells from 13.18% (18.52%) to 13.80% (19.55%). Beside, the use of 10% dichloromethane (DCM) in the binary antisolvent mixture results in a nano-textured MAPbI3 thin film with multicrystalline micrometer-sized grains and thereby increasing the short-circuit current density and fill factor (FF) of the resultant solar cells. It is noted that a remarkable FF of 80.33% is achieved, which can be used to explain the stable photovoltaic performance without additional encapsulations.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 485401 |
期刊 | Nanotechnology |
卷 | 32 |
發行號 | 48 |
DOIs | |
出版狀態 | 已出版 - 26 11月 2021 |