每年專案
摘要
Let X denote a connected (q + 1)-regular undirected graph of finite order n. The graph X is called Ramanujan whenever |λ|≤ 2q1 2 for all nontrivial eigenvalues λ of X. We consider the variant (u) of the Ihara Zeta function Z(u) of X defined by (u)-1= (1-u)(1-qu)(1-q1 2u)2n-2(1-u2)n(q-1) 2Z(u)if X is nonbipartite,(1-q2u2)(1-q1 2u)2n-4(1-u2)n(q-1) 2 +1Z(u) if X is bipartite. The function (u) satisfies the functional equation (q-1u-1) = (u). Let {hk}k=1∞ denote the number sequence given by d duln (q-1 2u) =k=0∞h k+1uk. In this paper, we establish the equivalence of the following statements: (i) X is Ramanujan; (ii) hk ≥ 0 for all k ≥ 1; (iii) hk ≥ 0 for infinitely many even k ≥ 2. Furthermore, we derive the Hasse-Weil bound for the Ramanujan graphs.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 2050082 |
期刊 | International Journal of Mathematics |
卷 | 31 |
發行號 | 10 |
DOIs | |
出版狀態 | 已出版 - 1 9月 2020 |
指紋
深入研究「Ihara Zeta function, coefficients of Maclaurin series and Ramanujan graphs」主題。共同形成了獨特的指紋。專案
- 1 已完成