TY - JOUR
T1 - Hydrothermal synthesis of barium titanate
AU - Chen, Huei Jyh
AU - Chen, Yu Wen
PY - 2003/2/5
Y1 - 2003/2/5
N2 - Barium titanate fine particles were prepared by hydrothermal synthesis. The synthesis was preformed at a temperature between 75 and 180 °C and for 10 min to 96 h. The reactions were carried out in a strong alkaline solution. Ba(OH)2·8H2O was used as the Ba-precursor material. Various Ti precursors were used to investigate their effects on the properties of BaTiO3. The BaTiO3 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, nitrogen sorption, and differential scanning calorimetry. XRD showed that the as-synthesized BaTiO3 powders have the BaTiO3 structure. The particle size of the Ti precursor has a strong influence on the size and morphology of barium titanate. The particle size of BaTiO3 was the largest when synthesized at 120 °C for 24 h by using anatase TiO2 (Merck) precursor. The particle size was about 0.1 μm when using TiO2 (70% anatase and 30% rutile, Degussa P25) or Ti(OH)4 as the precursor. The BaTiO3 powder was a porous structure when using Ti(OH)4 as the precursor. In addition, the particle size and morphology were dependent on the synthesis temperature. At 85 °C, the morphology of the powder was small crystal and an agglomerate of clusters. At 180 °C, the morphology of the powder was large (∼130 nm), uniform, and nearly monodisperse particles. Extending the synthesis time has no significant influence on the size and morphology.
AB - Barium titanate fine particles were prepared by hydrothermal synthesis. The synthesis was preformed at a temperature between 75 and 180 °C and for 10 min to 96 h. The reactions were carried out in a strong alkaline solution. Ba(OH)2·8H2O was used as the Ba-precursor material. Various Ti precursors were used to investigate their effects on the properties of BaTiO3. The BaTiO3 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, nitrogen sorption, and differential scanning calorimetry. XRD showed that the as-synthesized BaTiO3 powders have the BaTiO3 structure. The particle size of the Ti precursor has a strong influence on the size and morphology of barium titanate. The particle size of BaTiO3 was the largest when synthesized at 120 °C for 24 h by using anatase TiO2 (Merck) precursor. The particle size was about 0.1 μm when using TiO2 (70% anatase and 30% rutile, Degussa P25) or Ti(OH)4 as the precursor. The BaTiO3 powder was a porous structure when using Ti(OH)4 as the precursor. In addition, the particle size and morphology were dependent on the synthesis temperature. At 85 °C, the morphology of the powder was small crystal and an agglomerate of clusters. At 180 °C, the morphology of the powder was large (∼130 nm), uniform, and nearly monodisperse particles. Extending the synthesis time has no significant influence on the size and morphology.
UR - http://www.scopus.com/inward/record.url?scp=0037419883&partnerID=8YFLogxK
U2 - 10.1021/ie010796q
DO - 10.1021/ie010796q
M3 - 期刊論文
AN - SCOPUS:0037419883
SN - 0888-5885
VL - 42
SP - 473
EP - 483
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
IS - 3
ER -