Hybrid learning neuro-fuzzy approach for complex modeling using asymmetric fuzzy sets

Chunshien Li, Kuo Hsiang Cheng, Jiann Der Lee

研究成果: 書貢獻/報告類型會議論文篇章同行評審

8 引文 斯高帕斯(Scopus)

摘要

A hybrid learning neuro-fuzzy system with asymmetric fuzzy sets (HLNFS-A) is proposed in this paper. The learning methods of random optimization (RO) and least square estimation (LSE) are used in hybrid way to train the system parameters of HLNFS-A to achieve stable and fast convergence. In the HLNFS-A, the premise and the consequent parameters are updated by RO and LSE, respectively. With the proposed asymmetric fuzzy sets (AFS), the neuro-fuzzy system can capture the essence of nonlinear property of dynamic system, when used in the application of modeling. To demonstrate the feasibility and the potential of the proposed approach, an example of chaotic time series for system identification and prediction is given to verify the nonlinear mapping capability of the HLNFS-A. The experimental results show that the proposed HLNFS-A can achieve excellent performance for system modeling.

原文???core.languages.en_GB???
主出版物標題ICTAI 2005
主出版物子標題17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI'05
發行者IEEE Computer Society
頁面5-9
頁數5
ISBN(列印)0769524885, 9780769524887
DOIs
出版狀態已出版 - 2005
事件ICTAI 2005: 17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI'05 - Hong Kong, China
持續時間: 14 11月 200516 11月 2005

出版系列

名字Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI
2005
ISSN(列印)1082-3409

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???ICTAI 2005: 17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI'05
國家/地區China
城市Hong Kong
期間14/11/0516/11/05

指紋

深入研究「Hybrid learning neuro-fuzzy approach for complex modeling using asymmetric fuzzy sets」主題。共同形成了獨特的指紋。

引用此