TY - JOUR
T1 - How Students can Effectively Choose the Right Courses
T2 - Building a Recommendation System to Assist Students in Choosing Courses Adaptively
AU - Chang, Hui Tzu
AU - Lin, Chia Yu
AU - Wang, Li Chun
AU - Tseng, Fang Ching
N1 - Publisher Copyright:
© 2022,Educational Technology and Society. All rights reserved
PY - 2022
Y1 - 2022
N2 - In this study, we built a personalized hybrid course recommendation system (PHCRS) that considers students’ interests, abilities and career development. To meet students’ individual needs, we adopted the five most widely used algorithms, including content-based filtering, popularity-based methods, item-based collaborative filtering, user-based collaborative filtering, and score-based methods, to build a PHCRS. First, we collected course syllabi and labeled each course (e.g., knowledge/skills taught, basic/advanced level). Next, we used course labels and students’ past course selections and grades to train five recommendation models. To evaluate the accuracy of the system, we performed experiments with students in the Department of Electrical and Computer Engineering, which provides 1794 courses for 925 students and utilizes the receiver operating characteristic curve (ROC) and normalized discounted cumulative gain (NDCG) as metrics. The results showed that our proposed system can achieve accuracies of 80% for ROC and 90% for NDCG. We invited 46 participants to test our system and complete a questionnaire. Overall, 60 to 70% of participants were interested in the recommended courses, while the course recommendation lists produced by content-based filtering were in line with 67.40% of students’ actual course preferences. This study also found that students were more interested in courses at the top of the recommendation lists, and more students were autonomously motivated than held extrinsic informational motivation across the five recommendation methods. These findings highlighted that the proposed course recommendation system can help students choose the courses that interest them most.
AB - In this study, we built a personalized hybrid course recommendation system (PHCRS) that considers students’ interests, abilities and career development. To meet students’ individual needs, we adopted the five most widely used algorithms, including content-based filtering, popularity-based methods, item-based collaborative filtering, user-based collaborative filtering, and score-based methods, to build a PHCRS. First, we collected course syllabi and labeled each course (e.g., knowledge/skills taught, basic/advanced level). Next, we used course labels and students’ past course selections and grades to train five recommendation models. To evaluate the accuracy of the system, we performed experiments with students in the Department of Electrical and Computer Engineering, which provides 1794 courses for 925 students and utilizes the receiver operating characteristic curve (ROC) and normalized discounted cumulative gain (NDCG) as metrics. The results showed that our proposed system can achieve accuracies of 80% for ROC and 90% for NDCG. We invited 46 participants to test our system and complete a questionnaire. Overall, 60 to 70% of participants were interested in the recommended courses, while the course recommendation lists produced by content-based filtering were in line with 67.40% of students’ actual course preferences. This study also found that students were more interested in courses at the top of the recommendation lists, and more students were autonomously motivated than held extrinsic informational motivation across the five recommendation methods. These findings highlighted that the proposed course recommendation system can help students choose the courses that interest them most.
KW - Course recommendation
KW - Course selection
KW - Learning aids
KW - Personalized learning
UR - http://www.scopus.com/inward/record.url?scp=85125364679&partnerID=8YFLogxK
M3 - 期刊論文
AN - SCOPUS:85125364679
SN - 1176-3647
VL - 25
SP - 61
EP - 74
JO - Educational Technology and Society
JF - Educational Technology and Society
IS - 1
ER -